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INTRODUCTION

The summary receiver operating characteristic (SROC)

curve has been recommended to represent the perfor-

mance of a diagnostic test, based on data from a meta-

analysis. Under a fixed-effect, logit-threshold model, the

position of the SROC curve can be characterized in terms

of the overall diagnostic odds ratio and the magnitude of

interstudy heterogeneity. The Area Under the Curve

(AUC) and an index Q* are potentially useful summary

measures. It is shown that AUC is maximized when the

study odds ratios are homogeneous, and that it is quite

robust to heterogeneity. An explicit upper bound is

derived for AUC in the homogeneous situation, and a

lower bound based on the limit case Q*, defined by the

point where sensitivity equals specificity: Q* is invariant

to heterogeneity. The standard error of AUC is derived for

homogeneous studies, and is shown to be a reasonable

approximation with heterogeneous studies. AUC and its

standard error are easily computed in the homogeneous

case, and avoid the need for numerical integration in the

more general case. SE(AUC) and SE(Q*) are numerically

close, with SE(Q*) being larger if the odds ratio is very

large. Motivation for the use of the AUC and Q* measures

as summaries of the SROC curve are discussed.

A multilevel mixed model is also described, in which

test accuracy and threshold are allowed to vary between

studies. This provides a more general framework, within

which the fixed effect model is a special case. The mixed

model provides for the direct estimation of summary

values of sensitivity, specificity, and likelihood ratios.

Bayesian Markov Chain Monte Carlo (MCMC) methods

are required to fit the mixed model, and appropriate

software is becoming more available.

META-ANALYSIS OF DIAGNOSTIC
TEST DATA

Systematic reviews of primary studies are becoming

increasingly important for summarizing evidence about

the accuracy of diagnostic tests. Guidelines for the

conduct of such reviews[1–3] include defining the objec-

tives, retrieval of the relevant literature, data extraction,

meta-analytic methods for obtaining summary estimates

of test accuracy, and investigating reasons for variation in

test accuracy across studies.

The receiver operating characteristic (ROC) curve is

well established as a method of summarizing the per-

formance of a diagnostic test within a single study.[4–6]

It indicates the relationship between the true positive

rate (TPR) and the false positive rate (FPR) of the test,

as the threshold used to distinguish disease cases from

noncases varies. For instance, the threshold might be a

defined level of serum cholesterol as a marker of

cardiovascular disease, or a particular level of cellular

abnormality as a marker of malignancy. The summary

receiver operating characteristic (SROC) curve and the

area under the curve (AUC) have been proposed as a way

to describe diagnostic data in the context of a meta-

analysis.[1,2,7–10]

A schematic ROC curve is shown in Fig. 1. All of its

data points come from a single study, and are defined by

the results arising when one of several alternative

thresholds (or cut points) on the test results is used to

discriminate between disease cases and noncases. Liberal

thresholds that give high values of TPR will tend to

incorrectly label a relatively high fraction of the noncases

as cases, so the false positive rate (FPR) will be high.

Conversely, conservative thresholds yield incorrect labels

for noncases rather infrequently, but at the cost of

detecting a smaller fraction of the true cases; in this

situation, the value of TPR and FPR are both relatively

low. Thus one generally expects TPR and FPR to be

positively associated. In the ROC space, points near the

lower-left corner correspond to conservative thresholds

(low TPR and low FPR values), and points near the upper-

right corner correspond to liberal thresholds (high TPR

and high FPR values).

In a single study, changing the threshold necessarily

results in monotonic changes in TPR and FPR. Accord-

ingly, the ROC curve can always be empirically

represented, in its simplest form by connecting the data

points as shown in Fig. 1. Alternatively, smoothed curves
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can also be fitted using a latent variable approach, based

on a model that the case and noncase test values follow

normal or logistic distributions.[11–19]

In a meta-analysis, the units of analysis are separate

studies. In the simplest case, each study contributes an

estimate of TPR and FPR. The SROC curve represents the

relationship between TPR and FPR across studies,

recognizing they may have used different thresholds. In

contrast to the ROC analysis, the set of (FPR, TPR) points

does not necessarily yield a unique, monotonic curve.

Several methods have been proposed for fitting an SROC

curve;[7,10,20,21] this paper will focus on the properties of

the popular method developed by Moses et al.[10] An

alternative but more complex method proposed by Rutter

and Gatsonis[20,21] is also outlined and its potential

advantages are discussed.

LOGIT-THRESHOLD FIXED EFFECT MODEL
FOR SUMMARY RECEIVER OPERATING
CHARACTERISTIC CURVE

The most popular method to obtain a smoothed fit of

the SROC curve is to use the regression model proposed

by Moses et al.[10] The dependent and independent

variables are

D ¼ ln
TPR

1 � TPR

� �
� ln

FPR

1 � FPR

� �
ð1Þ

and

S ¼ ln
TPR

1 � TPR

� �
þ ln

FPR

1 � FPR

� �
ð2Þ

respectively. D is equivalent to the diagnostic log odds

ratio, ln(OR), which conveys the test’s accuracy in

discriminating cases from noncases. S is a function of

the diagnostic threshold in a study, with high values

corresponding to liberal inclusion criteria for cases. S=0

when TPR=1�FPR, i.e., on the antidiagonal from the

top-left to bottom-right corners of the SROC space. The

regression equation

D ¼ a þ bS ð3Þ

can be fitted by standard least squares methods,

assuming that D is approximately normally distributed

for a given value of S. Optionally, weights can be

employed to reflect interstudy heterogeneity with respect

to the sample variance of D, or a robust fitting

procedure may also be used.[10] The coefficient b in

Eq. 3 represents the dependence of the test accuracy on

threshold. If b�0, then the studies will be referred to as

homogeneous; they can then be summarized by an

overall OR, noting that a=ln(OR). If b 6¼0, then the

studies are referred to as heterogeneous with respect to

OR. In this case, a can be thought of as the value of

ln(OR) when S=0.

This model assumes logistic distributions for the test

values in the cases and noncases, but normal distributions

may also constitute an adequate approximation. However,

the model is generally fitted without directly appealing to

the logistic distribution assumption. If the underlying test

results actually have logistic distributions, then S for a

given study can be expressed as a function of the cut point

that gives rise to the sensitivity and specificity for that

study.[10] If the variances of the distributions of test results

for the cases and noncases are equal, then the SROC is

symmetric about the diagonal line where TPR=1�FPR.

If the variances are unequal, the resulting SROC will be

asymmetric. No assumptions are made about the distri-

bution of S. Covariates may be added to the model to

assess whether test accuracy varies systematically with

other study-related factors.[22,23]

If the estimate of test accuracy for each study is

weighted by the inverse of its variance, one is assuming

that sampling error is the only source of variability

between studies. However, this assumption may be

unrealistic, given that studies are likely to vary in a

number of respects, including the spectrum of disease,

conditions under which the test was administered, and

other study and patient characteristics that could affect test

accuracy.[24–26]

Although the parameters a and b are both fixed because

they are assumed to be constant across studies, applying

equal weights to studies (i.e., fitting an unweighted

regression) has been empirically shown to give results

that are consistent with assuming a random effect.[8,10,20]

This is because both the within- and between-study

variances are taken into account, thereby giving relatively

more weight to smaller studies, as would occur in a

random effect model. Irwig et al.[8] recommend the

Fig. 1 Schematic ROC curve.
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unweighted analysis, because weights based on sample

variances may give too much emphasis to inaccurate

studies, and hence give a biased SROC curve. Moses

et al.[10] also recommend the unweighted approach.

Once the regression has been fitted, one can reverse the

transformations (Eqs. 1 and 2) and hence deduce the

relationship between TPR and FPR as

TPR ¼
exp

a

1 � b

� � FPR

1 � FPR

� �ð1 þ bÞ=ð1 � bÞ

1 þ exp
a

1 � b

� � FPR

1 � FPR

� �ð1 þ bÞ=ð1 � bÞ

ð4Þ

Expression 4 gives TPR at any given value of FPR, and

hence defines the entire SROC curve. While there may be

interest in identifying particular points on the curve, it is

also useful to have an overall summary measure of the

curve’s behavior. One appropriate measure is the Area

Under the Curve (AUC), which can be calculated as

AUC ¼
Z 1

0

exp
a

1 � b

� � x

1 � x

� �ð1 þ bÞ=ð1 � bÞ

1 þ exp
a

1 � b

� � x

1 � x

� �ð1 þ bÞ=ð1 � bÞ dx

ð5Þ

In general, AUC must be numerically obtained, because

there is no closed form for expression 5.

Adoption of a summary index is helpful for succinct

reporting of a given data set, especially when limited data

preclude the reliable identification of particular points on

the curve. The AUC measure is widely used in ROC

analysis, where it can be interpreted as the probability that

the test values for a random pair of diseased and

nondiseased individuals would be correctly ranked; it

also represents the (unweighted) average of TPR over all

possible values of FPR.

The AUC is also a natural candidate summary for an

SROC analysis. We will consider the alternative index

Q*, which will be defined as a point of indifference on the

SROC curve, where the probabilities of an incorrect test

result are equal for disease cases and noncases. The partial

AUC has also been proposed as a summary measure, this

being the area under some restricted portion of the curve

corresponding to FPR values of clinical interest, or in

which study data are located.

EMPIRICAL BEHAVIOR OF THE
SUMMARY RECEIVER OPERATING
CHARACTERISTIC CURVE

Figure 2 shows a set of three symmetric SROC curves

with b=0, which occurs when the studies are homoge-

neous and thus exhibit no relationship between OR and

threshold (S). The curves were obtained by numerical

evaluation of Eq. 4 for a=1.5, 2, and 3, which correspond

to OR=4.5, 7.4, and 20.1, respectively. As a increases, the

SROC curve moves closer to its ideal position near the

upper-left corner. If a!1 , then AUC!1, which would

indicate a perfect test having 100% sensitivity and

specificity, and no errors in distinguishing cases from

noncases. In contrast, if a�0 (or OR�1), the curve lies

close to the diagonal TPR=FPR in the SROC space; then,

AUC=1/2 and the test performs no better than chance.

For completeness, we mention situations where a<0.

These correspond to OR<1, when the test discriminates

cases and noncases in the ‘‘wrong’’ direction, and worse

than at random. As OR!0, AUC!0, and the curve lies

close to the lower-right corner of the SROC space. Such

situations are unlikely to occur in practice.

We now consider the case of heterogeneous studies

under model 3, where diagnostic accuracy depends on

threshold (b 6¼0). Fig. 3 shows three SROC curves derived

from Eq. 4, all with a=2 but different values of b.

Nonzero values of b give asymmetric curves. If b>0, the

curve initially rises less steeply than the symmetric curve

(with b=0), but then it rises more steeply and crosses the

symmetric curve to achieve relatively high values of TPR

for high values of FPR. The SROC curves with b<0

exhibit the opposite behavior—see, for example, the curve

with b= �0.5 in Fig. 3.

Interestingly, as suggested by Fig. 3 and as shown by

Moses et al.,[10] the family of curves defined by a fixed

value of a all pass through a common point, located on the

antidiagonal, where TPR=1�FPR, or sensitivity equals

specificity. That point has coordinates

TPR ¼ expða=2Þ
1 þ expða=2Þ ð6Þ

Fig. 2 Summary receiver operating characteristic with various

values of a (b=0). (View this art in color at www.dekker.com.)
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and

FPR ¼ 1

1 þ expða=2Þ ð7Þ

Moses et al.[10] denote the value of TPR at this point by

Q*. In ROC analysis, Q* has been suggested as a further

summary measure. It corresponds to the point closest to

the ideal top-left corner of the SROC space in sym-

metric curves.

The fact that all SROC curves with a given value of

a pass through the same Q* point means that Q*

conveys no additional statistical information beyond the

odds ratio. However, use of Q* can be motivated by its

simple interpretability, given that Q* is the point on the

SROC curve where TPR=1�FPR; thus it represents

the diagnostic threshold at which the probability of a

correct diagnosis is constant for all subjects. Also, as

will be shown later, the existence of a common value

of Q* permits the derivation of a useful lower bound

for AUC.

As a consequence of assuming model 3, when b 6¼0,

the SROC curve has a region where TPR<FPR, which

lies below the main diagonal. This region may be seen,

for example, near the lower-left corner in the curve for

b=0.5 in Fig. 3. In this region, the test would theoretically

be performing worse than at random. However, in

practice, this region is very small. Even if relatively

strong heterogeneity (with b>0) is present, the ‘‘improp-

er’’ part of the SROC curve (where TPR<FPR) includes

very low values of TPR, and these values correspond to

test thresholds that are unlikely to be acceptable in

clinical practice. On the other hand, if heterogeneity with

b<0 occurs, the improper part of the curve corresponds to

very high values of FPR, which would again have no

clinical relevance. See Ref. [27] for numerical details of

this effect.

We now briefly discuss the behavior of model 3 for

extreme values of b. As b!1, the fitted SROC curve

becomes progressively steeper, and in the limit case at

b=1 it degenerates to a vertical line. This could occur, for

example, if there was no variation in FPR between

studies. However, the line still passes through the

common Q* point defined by Eqs. 6 and 7. Once b>1,

the curve inverts and shows a negative relationship of

TPR to FPR. This is implausible in practice, except

perhaps by chance in small samples.

Similar behavior is seen if b is near or below �1. Near

b= �1, the curve is horizontal, indicating no relationship

of TPR to FPR. This could occur if there was no variation

in TPR between studies. If b<�1, the curve again inverts

(to a different shape) and suggests an implausible negative

relationship between TPR and FPR. Despite this, all the

curves for jbj>1 possess the common value of Q* given

by Eqs. 6 and 7. In practice, data yielding jbj>1 are

unlikely. Empirical experience suggests that practical

meta-analysis data sets often have b close to 0, and are

rarely larger than 0.5 in absolute value.

SUMMARY MEASURES: AREA UNDER
THE CURVE AND Q*

The AUC is a popular index of the overall performance of

a test.[4–6,18,19,28] As mentioned earlier, AUC ranges from

1 for a perfect test that always correctly diagnoses, to 0 for

a test that never correctly diagnoses. In single studies,

AUC can be interpreted as the probability that the test will

correctly rank a randomly chosen case/noncase pair with

respect to their test values.[29] The AUC is intended to

fulfill the same function in meta-analyses, and in effect

one assumes that the SROC curve accurately conveys test

performance at the individual subject level.

Although numerical integration is required in general

to obtain AUC, some special cases are of interest because

they yield exact analytic expressions and comparative

results, as we now discuss. As expected, AUC increases

with a, for fixed b. By examining Eq. 5, one can prove that

for a given value of a, AUC is maximized when b=0,

implying that AUC is optimally large in homogeneous

studies.[27] Furthermore, one may show that AUC is sym-

metric in b, so that negative values of b yield the same

value of AUC as the equivalent positive value, this despite

the very different shapes of their associated SROC curves.

If a=b=0, then from Eq. 5

AUC ¼
Z 1

0

xdx ¼ 1

2

Fig. 3 Summary receiver operating characteristic with various

values of b (a=2). (View this art in color at www.dekker.com.)

4 SROC Curve



ORDER                        REPRINTS

By symmetry, it is evident that AUC=1/2 when a=0 even

if b 6¼0, so AUC=1/2 indicates random overall perfor-

mance for any set of studies.

In the homogeneous case b=0, the general expression

5 becomes

AUC ¼
Z 1

0

expðaÞ x

1 � x

� �
1 þ expðaÞ x

1 � x

� � dx

In this case, we can obtain an exact solution

AUChom ¼ OR

ðOR � 1Þ2
½ðOR � 1Þ � lnðORÞ� ð8Þ

where AUChom indicates the AUC for homogeneous

studies, and OR=exp(a). If a=0 (or OR=1), then the

special value AUChom=1/2 should be used in place of

Eq. 8, which is then degenerate. Expression 8 can be used

to evaluate AUC for homogeneous studies, without the

need for numerical integration. As demonstrated later, ex-

pression 8 is also a useful upper bound and close approxi-

mation for AUC in heterogeneous studies. For reference,

Table 1 shows the value of AUC, Q*, and their difference

for a range of values of OR in the homogeneous case.

By noting that AUC declines with increasing b, and

that the limit curve with b!1 passes through the common

Q* point, from Eqs. 6 and 7, we may deduce that a lower

bound for AUC in curves with a given value of a is

Q
 ¼ expða=2Þ
1 þ expða=2Þ ¼

ffiffiffiffiffiffiffi
OR

p

1 þ
ffiffiffiffiffiffiffi
OR

p ð9Þ

which is equivalent to the TPR value given in Eq. 6.

Also, Q* from Eq. 9 and the maximum value AUChom

from Eq. 8 provide easily computable lower and upper

bounds, respectively, for AUC with any given value

of a>0.

Numerical Tabulations

Numerical evaluations of expressions 8 and 9 demonstrate

that in the homogeneous case, the difference between

AUChom and Q* increases for moderate values of OR, but

is never more than about 7%.[27] The maximum difference

occurs at a=2.85 (or OR=17.3), which value is the

solution to a transcendental equation. For larger values of

a, the difference declines very slowly, with a limit value

AUChom�Q*=0 at a=1 .

The numerical integration of Eq. 5 for the heteroge-

neous case allows one to assess the impact of heteroge-

neity on the value of AUC. For a fixed value of OR, AUC

declines slowly as b increases from 0 (homogeneous

studies) to larger values (increasing heterogeneity).

However, the dependence of AUC on b is weak, and the

dominant effect on AUC is the value of OR (or a). For

jbj<0.4, the percentage change in AUC compared to the

homogeneous case is less than 2%. Accordingly, AUChom

provides a good approximation to AUC even in hetero-

geneous studies.[27]

STANDARD ERRORS OF AREA UNDER THE
CURVE AND Q*

We first consider the sample variation in dAUC. From

Eq. 5, we see that AUC is a function of the regression

parameters a and b, and hence the variability in dAUC is a

function of the sample variation in â and b̂. Using the delta

method, an approximate variance for dAUC is

varð dAUCÞ ¼ @AUC

@a

� �2

varðâÞ

þ @AUC

@b

� �2

varðb̂Þ þ 2
@AUC

@a

� �

� @AUC

@b

� �
covðâ; b̂Þ ð10Þ

where, from Eq. 5

@AUC

@a
¼ 1

1 � b

� �
exp

a

1 � b

� �

�
Z 1

0

x

1 � x

� �p

1 þ x

1 � x

� �p

exp
a

1 � b

� �h i2
dx

ð11Þ

@AUC

@b
¼ 1

1 � b

� �2

exp
a

1 � b

� �

�
Z 1

0

x

1 � x

� �p

a þ 2 ln
x

1 � x

� �h i
1 þ x

1 � x

� �p

exp
a

1 � b

� �h i2
dx

ð12Þ

Table 1 AUChom, Q*, and their difference for various values

of the diagnostic odds ratio: homogeneous case

Odds ratio AUChom Q* AUChom��Q*

0.5 0.386 0.414 �0.028

1 0.500 0.500 0.000

1.5 0.567 0.551 0.017

2 0.614 0.586 0.028

3 0.676 0.634 0.042

4 0.717 0.667 0.051

5 0.747 0.691 0.056

10 0.827 0.760 0.067

20 0.887 0.817 0.069

30 0.913 0.846 0.068

40 0.929 0.863 0.065

50 0.939 0.876 0.063
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and p=(1+b)/(1�b). The variances and covariance of â

and b̂ can be directly obtained from the standard re-

gression software used to fit model 3 to the data.

In general, evaluation of var( dAUC) again requires

numerical integration. However, for the special case of

homogeneous studies where b=0, an approximate, large-

sample expression is possible. Using the delta method, we

may then obtain

SEð dAUChomÞ ¼ OR

ðOR � 1Þ3
½ðOR þ 1Þ ln OR

� 2ðOR � 1Þ�SEðâÞ ð13Þ

Eq. 13 implies SE( dAUChom) is symmetric in ln(OR),

although we would usually be concerned with values

OR>1. When OR=1, expression 13 is degenerate, but by

using L’Hôpital’s rule, one can show that in the

neighborhood of OR=1,

SEð dAUCÞ � SEðâÞ=6 ð14Þ

The delta method also yields an approximate standard

error for Q̂* as

SEðQ̂
Þ ¼
ffiffiffiffiffiffiffi
OR

p

2ð
ffiffiffiffiffiffiffi
OR

p
þ 1Þ2

SEðâÞ ð15Þ

Moses et al.[10] give this result in an alternative form

involving cosh(a/4). Numerical evaluations show that the

standard errors of Q* and AUC are both maximized when

OR=1, so the least precise situation for either index is for

tests that have close to random performance. In the region

of OR=1, SE( dAUC)�1/6 and SE(Q̂*)�1/8. Comparisons

show SE( dAUC)>SE(Q̂*) for OR values between 1 and

17.3, the same value associated with the values of AUC

and Q*; for OR>17.3, AUC has the smaller standard

error. Both standard errors approach 0 as a!1 .

For heterogeneous studies, SE( dAUC) is not necessarily

maximized when a=0, because it involves var(b̂) and

cov(â, b̂) as well as var(â). However, it is the last of these

terms that dominates, with the other two making relatively

small numerical contributions. Thus in practice SE( dAUC)

is maximized approximately when OR=1, even for

heterogeneous studies. For most values of OR, the

standard error declines by up to about 10% at the most

extreme level of b.

OTHER ISSUES WITH THE
FIXED-EFFECT MODEL

So far, we have established some basic properties of

the SROC curve under model 3, and we found that

the value AUChom associated with homogeneous studies

is a reasonable upper-bound approximation even for

the general AUC with heterogeneous studies. The cor-

responding standard error also provides a good approxi-

mation for heterogeneous studies, and is conservatively

large except in some cases of extreme heterogeneity. In

the presence of strong heterogeneity, the AUC would be

an inadequate summary of the data anyway, and it would

then be preferable to examine the SROC curve in more

detail, including specific TPR values for given FPR.

Q* also provides an easily computed lower bound for

AUC, but empirically appears to be not quite as good an

approximation as AUChom. The motivation for Q* as an

index in its own right is that it is located where the SROC

curve crosses the antidiagonal from (0,1) to (1,0) of the

SROC space. Hence TPR=1�FPR at Q*, and so the

probability of an incorrect result from the test is the same

for cases and noncases. Q* is therefore a point of

‘‘indifference’’ between false-positive and false-negative

diagnostic errors. In homogeneous studies, Q* is the point

on the SROC curve lying closest to the optimal upper-left

corner, but this is not true with heterogeneous studies.

Use of Q* as the summary measure assumes implicitly

that false-negative and false-positive test results are of

equal value. In practice, there may be different costs

associated with these two types of error: One wishes to

minimize false-positive results because of the additional

testing required to establish the correct diagnosis (non-

case), and because the additional tests tend to be more

costly, invasive, or risky. On the other hand, false-

negative results lead to disease cases being missed, with

possible deterioration in their prognosis. In general, one

must weigh the false-positive and false-negative errors

to balance the overall performance of the test in a pop-

ulation; the optimal diagnostic threshold does not then

correspond in general to the Q* point.

One can motivate the use of AUC as an index that

represents the probability that the test will correctly rank a

case/noncase pair of subjects.[4,29] It can also be thought

of as the average TPR over the entire range of FPR values.

Because it summarizes the whole SROC curve, AUC has a

symmetric interpretation with respect to either TPR or

FPR. The AUC is affected by the whole SROC curve,

including regions with limited or no data, or by sectors

corresponding to TPR and FPR values that are unlikely to

occur in practice. Accordingly, it has been suggested that

partial SROC curves be adopted, by limiting attention to

those portions of the SROC curve of clinical interest, or

where data are actually observed.[30–33]

There are some unresolved issues on the use of partial

SROC curves and the corresponding partial AUC. First,

the partial AUC may be thought of as the average TPR

within a restricted range of FPR, but not vice versa. Hence

the partial AUC has an asymmetric interpretation with

respect to TPR and FPR; on the other hand, the complete

6 SROC Curve
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AUC enjoys a symmetric interpretation with respect to

both types of test error. Second, there may be some

arbitrariness in which regions of the curve to select.

One might examine the SROC curve within a prespeci-

fied range of TPR values, for instance by defining a

maximum acceptable level for clinical practice. Another

approach would be to choose the region according to the

observed range of data in the meta-analysis; the choice

itself would then be affected by sampling variation,

which might be substantial in meta-analyses involving

small studies. Furthermore, a reasonable choice for one

test may be unreasonable for another test, thus compli-

cating their comparison.

The analytic methods for AUC presented in this paper

can be extended to cover the partial AUC and its standard

error. We may expect the effect of interstudy hetero-

geneity to be greater for the partial AUC than the weak

effect seen for the full AUC. For instance, if attention is

limited to values of FPR<0.2 when a=2 (Fig. 3), the

corresponding partial AUC will be greater when b>0 than

when b<0. Hence the partial AUC lacks symmetry with

respect to b. On the other hand, the complete AUC has

some compensating decreases in contributions to the area

at higher values of FPR, so there are only modest changes

in the total AUC as b varies (Fig. 3). We may also recall

that AUC is symmetric with respect to b, so that the same

summary value will be obtained for a given strength of

dependence of diagnostic accuracy on the test threshold.

The partial AUC does not possess these properties, and

hence it will show greater dependence on the degree of

interstudy heterogeneity. Further work is needed to

explore the properties of the partial AUC in more detail.

Similar investigation is needed for other summary indices,

such as the ASC (Area Swept out by the Curve), PLC

(Projected Length of the Curve),[34] and the Gini/Lorenz

coefficients.[35]

Sampling variability and dependence between test

accuracy and test threshold are unlikely to fully account

for the observed heterogeneity in test accuracy between

studies. Additional sources of heterogeneity can be ex-

plored by examining the association between test accuracy

and study level covariate information.[3,8,36] However,

given the limited data on patient and study design

characteristics that are typically available, it is unlikely

that study level variables will fully explain the ‘‘excess’’

variability in test accuracy.[26] Inappropriately assuming a

fixed effect can lead to spurious precision and result in

covariates being incorrectly identified as significantly

associated with test accuracy.[26] A mixed model that

includes random effects for test accuracy can take into

account unexplained variability between studies. This

approach is used in the hierarchical (mixed) model outlined

briefly below, which, unlike the Moses approach, directly

models the TPR and FPR for each study.

HIERARCHICAL (MIXED) EFFECTS MODEL

An alternative approach to fitting SROC curves has been

proposed by Rutter and Gatsonis.[20,21] As with the Moses

model, each study (i) contributes an estimate of TPR and

FPR to the meta-analysis. For each study, the number in the

diseased group who have a positive test result (yi1) and the

number in the nondiseased group who have a positive test

result (yi2) are both assumed to follow a binomial

distribution such that yij�b(nij, pij), where pij represents

the probability of a positive test for group j ( j=1,2) in study

i, and nij represents the total number of positive and

negative test results in group j. The model is based on an

ordinal logistic regression model[37] and takes the form

logit(pij)=(yi+aidisij)exp(�b disij) where disij represents

the true disease status (coded as �0.5 for the nondiseased

and 0.5 for the diseased). The model parameters estimate

the implicit threshold (yi) for a positive test result in study i

and the diagnostic accuracy (ai) for study i. The parameter

b allows for an association between test accuracy and test

threshold. The estimated SROC is symmetric when b=0.

This hierarchical (multilevel) model takes into account

both the within- and between-study variability.

The within-study variability is modeled at the first

level. For the ith study, logit(TPRi) and logit(FPRi) are

modeled to estimate the implicit threshold (yi) and

diagnostic accuracy (ai) for that study. Hence random

effects are assumed for both threshold and accuracy as

these may vary across studies. When the SROC is

symmetric (i.e., b=0), the level 1 analysis for each study

reduces to a ordinary logistic regression model where ai is

estimated by logit(TPRi)� logit(FPRi) (which is equiva-

lent to the observed value Di in study i for the dependent

variable in model 3) and yi is estimated by (logit(TPRi)+

logit(FPRi))/2 (which is equivalent to Si/2, where Si is the

observed value in study i for the independent variable in

model 3). The sampling variability for both TPRi and

FPRi is taken into account.

The variability between studies is modeled at level 2.

The random effects for test threshold and accuracy are

assumed to be independent (uncorrelated) and normally

distributed with yi�N(Y, ty
2) and ai�N(L, ta

2). The

hyperparameters Y and L represent the expected

threshold and accuracy, respectively, across all studies

in the analysis. If ty
2=0 and ta

2=0, the model reduces to a

fixed-effect model. Because each study contributes only

one point in ROC space to the analysis, a single study does

not provide information on the shape of the SROC. Hence

the shape parameter (b) is assumed to be a fixed effect,

which is estimated from the study points jointly

considered. The hierarchical model is fitted using Markov

Chain Monte Carlo (MCMC) Bayesian methods. This

requires a third level to specify prior distributions for all

model parameters.

SROC Curve 7
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A summary ROC curve can be constructed by choosing

a range of values of FPR and using the estimated model

parameters to compute the predicted values for sensitivity.

The expected TPR at a chosen FPR value is given by

TPR(FPR) = 1/(1 + exp[�{Lexp(�0.5b) + logit(FPR)

exp(�b)}).

The expected operating point on the curve is estimated

using E(TPR)=1/(1+exp[�{(Y+L/2)exp(�b/2)}]) and

E(FPR)=1/(1+exp[�{(Y�L/2)exp(�b/2)}]). Covari-

ates can be added to the model to assess whether

threshold, accuracy, and/or the shape of the SROC vary

with patient or study characteristics. Such terms are

generally fitted as fixed effects, but could also be included

as random effects.

Advantages of the Hierarchical Model

The Rutter and Gatsonis method provides a general

framework for the meta-analysis of diagnostic test

performance. The Moses method does not directly model

the TPR and FPR values for each study. Because D and S

are functions of both TPR and FPR, the parameters for the

Moses model cannot be used to obtain the expected

operating point on the SROC, the corresponding likeli-

hood ratios at that point, or the standard errors of these

estimates. The hierarchical model can be used to model

variation in test threshold as well as test accuracy through

the inclusion of study level covariates, whereas the Moses

approach can only be used to model variation in test

accuracy. However, the Moses model does have the

advantage that no assumption is made about the

distribution of S. Lastly, the hierarchical model incorpo-

rates both the within- and between-study variability, and

takes account of unexplained heterogeneity between

studies through the inclusion of random effects for test

threshold and accuracy.

Fitting the Model

Despite the potential advantages of the hierarchical

model, it has not been widely adopted. This is most

likely because of the necessity to use Markov Chain

Monte Carlo (MCMC) methods to fit it.[20] Rutter and

Gatsonis[21] have demonstrated how the model can be

fitted using BUGS (Bayesian inference Using Gibbs

Sampling) software. However, they comment that the

process involves MCMC simulation, and is still relatively

complex. The recent availability of software for fitting

nonlinear mixed models in SAS[38] provides an alternative

and potentially more straightforward approach that does

not require specification of prior distributions. PROC

NLMIXED in SAS allows for a nonlinear function of the

model parameters, and for a non-normal error distribution,

but the random effects are restricted to be normally

distributed. Summary estimates of TPR, FPR, likelihood

ratios can be computed and their asymptotic confidence

intervals estimated using the delta method. The distribu-

tion of the random effects may be checked by examining a

histogram and normal probability plot of their Empirical

Bayes (EB) estimates. This follows the same approach

adopted for checking distributional assumptions for linear

mixed models.[39,40]

CONCLUSION

The mixed model provides a rigorous method of analysis

that takes proper account of the sources of variability in

test performance between studies. The resulting standard

errors (and confidence intervals) reflect the unexplained

heterogeneity that is likely to be present in many meta-

analyses. The mixed model also allows estimation of

clinically relevant indicators of test performance such as

the expected TPR, FPR and likelihood ratios. A range of

alternative fixed-effect and random effects methods are

available for obtaining these summary measures.[22]

However, they can lead to results that are potentially

inconsistent within the same meta-analysis. For instance,

for the same data, summary estimates of TPR and FPR

could be computed that are not consistent with summary

estimates of likelihood ratios or an SROC estimated using

the Moses model. A useful feature of the mixed model is

that other approaches can be regarded as special cases.

The complexity of the Bayesian (MCMC) method for

fitting the mixed effects model is likely to discourage its

use. The NLMIXED procedure is more accessible, but at

present this software can only deal with two levels in the

response variable. For meta-analyses where studies

contribute more than one (FPR, TPR) pair to the analysis,

an additional level would be required. A Bayesian

approach potentially provides greater flexibility for fitting

the mixed effects model in that it allows the meta-analyst

to specify alternative distributions for the random effects

and also allows prior information to be taken into account.

However, in practice, a normal distribution is often

assumed for the random effects and noninformative priors

are commonly used. Likelihood-based methods for

estimating mixed model parameters are also consistent

with current approaches used in the meta-analysis of

clinical trials.[39,41,42] Model checks are required to assess

the adequacy of the distributional assumption for the

random effects, but assessing normality will clearly be

difficult in small meta-analyses.[39]

The Moses fixed-effect SROC model has the advantage

of simplicity, and it makes no assumptions about the

distribution of S. It is useful as a preliminary step before

8 SROC Curve
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fitting the mixed model. Major differences in the variables

found to be associated with test accuracy or the shape of

the SROC would warrant investigation as this may be

indicative of convergence problems.

An issue that potentially affects all of the methods

discussed here is that reference test (or gold standard) has

been assumed to be error-free. In fact, the reference

standard is often itself subject to measurement error, as

illustrated, for example, in the observable differences

between pathologists and radiologists in their assessments

of the same sample material. Several methods have been

proposed to correct for referent errors, but they primarily

pertain to data from single studies. Rather little has been

done on this problem in the context of combining studies

in a meta-analysis, but one proposed approach[43] has

been to use a latent class framework to extend the logit-

threshold model (Eq. 3), and to recognize the fact that

both the candidate and referent tests are potentially

subject to error. The true disease state of an individual

cannot be directly observed, but an estimate of the

probability of an individual having disease can be

obtained from the latent class model. This then permits

a deattenuation of the errors in the data, and the resulting

adjustment to the SROC curve tends to lead to an im-

proved estimate of test performance.

Further development of the SROC methods are

required to allow comparison of SROC curves when not

all component studies in a meta-analyses are independent

of one another. For example, some of the component

studies may make direct comparisons of two tests while

other studies only evaluate one. Methods to take such

dependencies into account have been proposed for

therapeutic studies,[44] and extensions to diagnostic test

comparisons would be useful.

The techniques discussed here apply to situations

where one has only summary measures (TPR and FPR)

from each study. Sometimes one has access to the

individual level data in each study; one would then be

able to carry out a multilevel analysis, taking both inter-

and intrastudy variation into account, as well as the effects

of subject-specific covariates. However, in practice,

current reporting of diagnostic studies and meta-analyses

is methodologically poor, and this level of detail in the

data would often be difficult to achieve.[1,36,45,46]

Accordingly, further work to understand the properties

of the SROC curve based on summary data from each

study seems warranted.
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