Rapid detection of *Mycobacterium tuberculosis* from sputum specimens using the FASTPlaqueTB test

N. Kiraz,* L. Et,† Y. Akgun,* N. Kasifoglu,* A. Kiremitci*

* Department of Microbiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, † Microbiology Laboratory, Iskenderun State Hospital, Iskenderun, Turkey

OBJECTIVES: To determine the performance of the FASTPlaqueTB test, based on bacteriophage amplification technology, by comparison with the BACTEC 460 TB culture system, the Löwenstein-Jensen (LJ) medium culture method and Ziehl-Neelsen (ZN) staining.

METHODS: Of 400 sputum specimens studied in our laboratory, 19 were excluded due to contaminant growth. The FASTPlaqueTB test was performed according to the manufacturer’s instructions.

RESULTS: Only 42 of the 381 specimens examined were positive on at least one test: 30 were positive with ZN staining, 34 with LJ medium, 36 with the FASTPlaqueTB test and 39 with BACTEC 460 TB. The combination of BACTEC 460 TB and LJ medium culture was considered the gold standard. The sensitivity and specificity were 70.7% and 99.7% for ZN staining, 87.8% and 100% for the FASTPlaqueTB test, 82.9% and 100% for LJ, and 95.1% and 100% for BACTEC 460 TB.

CONCLUSIONS: The FASTPlaqueTB test is useful in the rapid diagnosis of TB.

KEY WORDS: FASTPlaqueTB test; *Mycobacterium tuberculosis*; sputum
Using the FASTPlaque TB test in sputum samples

To assess the integrity of the phage and the effectiveness of the phagicidal agent, for the assay, 1 ml of decontaminated and concentrated sediment was mixed with 1 ml of FASTPlaque TB broth and incubated at 37°C overnight to enrich viable TB bacilli present in the sample. After enrichment, 100 μl of the mycobacteriophage solution was added and incubated for a further 1 h to allow infection to take place; 100 μl of virucide solution was then added to destroy all bacteriophages that had not infected host cells, and incubated at room temperature for 15 min. Then 5 ml FASTPlaque TB medium was added to neutralise excess virucide, followed by 1 ml of helper cells. After thorough mixing, it was added to the Petri dish and overlaid with 5 ml molten agar. The plates were rotated several times, clockwise and counterclockwise, after pouring. The plates were then allowed to set and were incubated at 37°C.

The number of plaques was counted after overnight incubation. As recommended by the manufacturer, a cut-off of 20 plaques was used to interpret the results. A negative result meant that the specimen did not contain live TB bacilli, while a positive result meant that live TB bacilli were present in the specimen. Examples of negative and positive results obtained in our study are shown in the Figure.

LJ culture

For LJ culture, 0.5 ml of processed specimen was inoculated onto two slants of LJ egg medium and incubated at 37°C. The slants were inspected every day during the first week, then once weekly for 10 weeks. All positive cultures were confirmed by ZN microscopy. Further identification was done using standard biochemical tests.

BACTEC 460 TB culture system

For the BACTEC method (Becton Dickinson, Cockeysville, MD, USA), 0.5 ml of processed specimen was inoculated into the BACTEC 12B vial supplemented with PANTA (a mixture of five different antibiotics: polymyxin B, amphotericin B, nalidixic acid, trimethoprim and azlocillin) and incubated at 37°C. Readings were taken twice a week for the first 2 weeks and once a week thereafter for culture positivity for 6 weeks. AFB smears were made from vials with a growth index (GI) of ≥50–100, and further identification of mycobacteria grown in BACTEC cultures was done using the para-nitro-o-acetylamino-β-hydroxypropiophenone (NAP) test.

Statistical analysis

The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the phage assay were calculated by comparing them with those for AFB smear microscopy, the BACTEC and LJ methods and with clinical evidence of disease.

RESULTS

The distribution of the 42 positive samples using the applied methods is shown in Table 1. Positive results were obtained by all of the methods in 28 of the 42 (66.6%) positive samples. In 14 of the 42 (33.3%) positive samples, we obtained distinct positive results with four different methods. Table 2 shows the positive results using the different methods.

According to the reports of various studies, the gold standard for the diagnosis of mycobacteria is determined by inoculating the samples into one solid medium and one broth medium. In our study, we used the combination of Bactec 12B and LJ as the gold standard and evaluated and compared the sensitivity, specificity, PPV and NPV of other methods.

The results of the FASTPlaque TB test were compared with the results of the culture method (BACTEC 12B + LJ) in 381 sputum samples. In 36 of 41 sputum samples that were positive on culture (BACTEC 12B
and/or LJ), the FASTPuleTB test was positive, while in 5 of the 41 positive samples the FASTPuleTB test failed. (Forty-two sputum samples were positive by at least one test; 41/42 positive samples were positive on culture [Bactec 12B and/or LJ] and 1/42 positive samples was positive only on AFB smear.) None of the culture-negative samples were positive with the FASTPuleTB test. Three hundred and forty sputum samples were negative for both culture methods and the FASTPuleTB test. The sensitivity and specificity of the FASTPuleTB test for all samples were determined at 87.8% and 100%, respectively. Table 1 shows the sensitivity, specificity, PPV and NPV of the other methods with respect to the culture method (BACTEC 12B + LJ) used as the gold standard.

DISCUSSION

The most frequently used diagnostic methods for TB are culture and smear microscopy with acid-fast staining. Although smear microscopy is an easy, rapid and cheap diagnostic method for mycobacteria, its sensitivity is low. For a definite diagnosis of TB, isolation of bacilli is needed. For culture, however, which is defined as the gold standard in the bacteriological diagnosis of M. tuberculosis, a period of 4–6 weeks is required. Interest has recently increased in new techniques that provide rapid diagnosis of M. tuberculosis. The FASTPuleTB test, developed for rapid diagnosis of live tubercle bacilli, is a method that is based on bacteriophage amplification technology. This method is simple, and the results are obtained in 48 h and interpreted easily.

In a study conducted in Cape Town, South Africa, Albert et al. compared the FASTPuleTB test and culture method (LJ) in 1618 sputum samples. They found the sensitivity, specificity, PPV and NPV of the FASTPuleTB test to be 72.5%, 99%, 91% and 96%, respectively. Muzaffar et al. compared the FASTPuleTB test and culture method (LJ) in 514 sputum samples and reported a sensitivity, specificity, PPV and NPV for the FASTPuleTB test of 81.6%, 97.7%, 97% and 85%, respectively. Albay et al., in a study of 192 sputum samples, compared the FASTPuleTB test with the BACTEC 460 TB culture system. They found the sensitivity, specificity, PPV and NPV of the test to be 87.5%, 96.9%, 93.3% and 93.3%, respectively. Cavusoglu et al., however, reported a lower sensitivity (27%).

In our study, we compared the FASTPuleTB test with culture (BACTEC 12B + LJ) and found the sensitivity, specificity, PPV and NPV of the method to be 87.8%, 100%, 100% and 98.5%, respectively. The results of our study show that the FASTPuleTB test can be a beneficial detector of TB with high specificity, as reported by other authors.

A total of 351 (92.1%) samples tested in our study were negative for AFB smear. When comparing the results of the FASTPuleTB test and culture (BACTEC 12B + LJ) in AFB-negative samples, the FASTPuleTB test plays an important role in early diagnosis, with high sensitivity (66.6%) and specificity (100%). In addition, the results are obtained rapidly, within 48 h, compared to 2–8 weeks for culture. Our results were comparable to those obtained from studies conducted in other high TB prevalence areas. Using the FASTPuleTB test in AFB smear-negative sputum samples, Muzaffar et al. found the sensitivity and specificity to be 67% and 98%, respectively, while Albert et al. reported a sensitivity and specificity of respectively 48% and 98%.

When comparing the results of the FASTPuleTB test and culture methods, we obtained false-negative results (FASTPuleTB-negative, culture-positive) in one AFB smear-positive sample (n = 30) and in four AFB smear-negative samples (n = 351). The false-negative ratio was 12.2%. In similar studies by Muzaffar et al., Albert et al. and Albay et al., false-negative ratios of respectively 8.7%, 3.5% and 4.1% were reported.

We did not observe any false-positive (FASTPuleTB-positive, culture-negative) results in our

Table 1 Sensitivity, specificity, PPV and NPV of the different methods used in tuberculosis diagnosis (n = 381)

<table>
<thead>
<tr>
<th>Method</th>
<th>Total positive</th>
<th>True-positive</th>
<th>False-negative</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV %</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB smear</td>
<td>30</td>
<td>29</td>
<td>1</td>
<td>70.7</td>
<td>99.7</td>
<td>96.7</td>
<td>96.6</td>
</tr>
<tr>
<td>Bactec 12B</td>
<td>39</td>
<td>39</td>
<td>0</td>
<td>95.1</td>
<td>100</td>
<td>100</td>
<td>99.4</td>
</tr>
<tr>
<td>LJ</td>
<td>34</td>
<td>34</td>
<td>0</td>
<td>82.9</td>
<td>100</td>
<td>100</td>
<td>98.0</td>
</tr>
<tr>
<td>FASTPuleTB</td>
<td>36</td>
<td>36</td>
<td>0</td>
<td>87.8</td>
<td>100</td>
<td>100</td>
<td>98.6</td>
</tr>
</tbody>
</table>

* True positive standard number is 41 (41/42 positive samples were positive on culture and one was positive only on AFB smear).

Table 2 Analysis of positive results with four different methods used in tuberculosis diagnosis (n = 14)

<table>
<thead>
<tr>
<th>Methods applied</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bactec 12B + FASTPuleTB</td>
<td>4 (28.58)</td>
</tr>
<tr>
<td>Bactec 12B + FASTPuleTB + LJ</td>
<td>4 (28.58)</td>
</tr>
<tr>
<td>Bactec 12B</td>
<td>3 (21.42)</td>
</tr>
<tr>
<td>AFB smear + Bactec 12B + LJ</td>
<td>1 (7.14)</td>
</tr>
<tr>
<td>LJ</td>
<td>1 (7.14)</td>
</tr>
<tr>
<td>AFB smear</td>
<td>1 (7.14)</td>
</tr>
<tr>
<td>Total</td>
<td>14 (100)</td>
</tr>
</tbody>
</table>

AFB = acid-fast bacilli; LJ = Löwenstein-Jensen.
study. This indicates that the assay has a very high specificity for the *M. tuberculosis* strains present in our population. In similar studies by Albert et al., Muzaffar et al. and Albay et al., false-positive ratios of respectively 0.8%, 2.9% and 2% were reported. Investigators have explained the false-positive results in the FAST Plaque test by the addition of low virucidal solution to samples or inadequate mixing and insufficient inactivation of the exogenous phage and by contamination of the sample with Sensor cell.

We found a sensitivity of the FAST Plaque test of 87.8% and that of AFB smear microscopy of 70.7% in our study. AFB smear is positive if >10⁴/ml bacilli are present in the sample, while the FAST Plaque test is positive if 100–300 bacilli/ml are present. The FAST Plaque test therefore has a higher sensitivity than AFB microscopy.

We found a high specificity (99.7%) of AFB smear microscopy for *M. tuberculosis*. A false-positive AFB smear (FAST Plaque negative, culture-negative) was detected in only one (0.2%) sample. This may be explained by microscopy artefacts due to non-specific staining of other microorganisms. The unexplained false-positive rate for smear microscopy varies between 10% and 20%. Muzaffar et al. and Albert et al. reported false-positive AFB smear microscopy results of 2.9% and 2.1%, respectively, while Albay et al. reported no false-positive smear results.

Our data showed that when combining the AFB smear and FAST Plaque results for the diagnosis of TB, we obtained rapid identification in 90.2% of the samples evaluated by culture (BACTEC 12B + LJ), with high specificity (99.7%). On combining AFB smear and FAST Plaque results, Muzaffar et al. reported that identification could be performed rapidly, with a specificity of 92.1%, in 90.6% of samples evaluated by culture (LJ). Our results are comparable to those of other studies.

In our study, 34 (80.9%) of the 42 positive samples were positive on LJ, and 36 (85.7%) of 42 positive samples were positive using the FAST Plaque test. The much larger volume (1 ml) of specimen used in the FAST Plaque test as compared to the LJ culture inocula (0.5 ml) is likely to improve the sensitivity of the assay when testing pan-c bacillary specimens. These data demonstrate that the FAST Plaque method is better than LJ culture in detecting bacilli.

The concordance of the FAST Plaque test with the gold standard culture method (BACTEC 12B + LJ) was 98.6% in the present study. In a study of 192 sputum samples, Albay et al. reported a concordance of the FAST Plaque test with their gold standard method, the Bactec 460 TB culture method, of 93.7%.

In conclusion, the sensitivity and specificity of the FAST Plaque TB test were higher than those for AFB smear microscopy in the rapid diagnosis of *M. tuberculosis*. Important advantages of this test are that it is rapid and inexpensive. Using this test in sputum samples in developing countries where TB incidence is higher is therefore logical. However, further studies are needed to investigate the effectiveness of the FAST Plaque test in samples other than sputum and in AFB smear-negative samples.

Acknowledgement
This study was supported by Eskisehir Osmangazi University Scientific Investigation Project Commission (Project No: 2002/11045).

References
OBJECTIFS : Déterminer la performance du test FAST-PlaqueTB basé sur une technologie d’amplification des bactériophages en comparaison avec le système de culture BACTEC 460 TB, la méthode de culture sur milieu de Löwenstein-Jensen (LJ) et la coloration de Ziehl-Neelsen (ZN).

MÉTHODES : Au total, 400 échantillons de crachats ont été étudiés dans notre laboratoire. On a exclu 19 échantillons en raison du développement de contaminants. Le test FASTPlaqueTB a été exécuté selon les indications du fabricant.

RÉSULTATS : Des 381 échantillons examinés, seulement 42 ont été positifs à au moins un test. Trente des 42 ont été positifs à la coloration de ZN, 34 sur milieu de culture de LJ, 36 au test FASTPlaqueTB et 39 après BACTEC 460 TB. La combinaison de BACTEC 460 TB et du milieu LJ a été considérée comme le gold standard. La coloration de ZN a une sensibilité de 70,7% et une spécificité de 99,7% ; le test FASTPlaqueTB respectivement de 87,8% et de 100% ; le milieu de LJ respectivement de 82,9% et 100% et le BACTEC 460 TB respectivement de 95,1% et 100%.

CONCLUSION : Nous concluons que parmi les autres tests appliqués, le test FASTPlaqueTB est valable pour un diagnostic rapide de la TB.

RESUMEN

OBJETIVOS : Determinar el rendimiento diagnóstico de la prueba FASTPlaqueTM, basada en una técnica de amplificación por bacteriófagos y compararlo con el rendimiento del sistema de cultivo BACTEC 460 TB, el método de cultivo en medio Löwenstein-Jensen (LJ) y con la coloración de Ziehl-Neelsen (ZN).

MÉTODOS : Se estudiaron en el laboratorio 400 muestras de esputo. Se excluyeron 19 muestras por contaminación del cultivo. La prueba FASTPlaqueTB se realizó en conformidad con las instrucciones del fabricante.

RESULTADOS : Solo 42 de las 381 muestras examinadas fueron positivas por lo menos en una de las pruebas. De las 42 muestras, 30 fueron positivas con la coloración de ZN, 34 en cultivos con medio LJ, 36 con la prueba FASTPlaqueTB y 39 fueron positivas con el método BACTEC 460 TB. Considerando como método de referencia la combinación BACTEC 460 TB y cultivo en medio LJ, la sensibilidad y la especificidad observadas fueron de 70,7% y 99,7% con la coloración de ZN ; de 87,8% y 100% con la prueba FASTPlaqueTB ; de 82,9% y 100% con el cultivo en LJ ; y de 95,1% y 100% con el método BACTEC 460 TB.

CONCLUSIÓN : Entre los diferentes métodos diagnósticos, la prueba FASTPlaqueTB constituye un valioso sistema rápido de diagnóstico de la TB.